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1. Introduction

The Minimal Supersymmetric Standard Model (MSSM) makes a firm prediction for the

mass of the lightest Higgs boson. Supersymmetry (SUSY) relates the quartic coupling of

the Higgs boson to the Standard Model (SM) gauge couplings, resulting in a tree-level

prediction for the Higgs mass: mh < MZ = 91 GeV. The current Higgs mass bound

from LEP II (mh ≥ 114.4 GeV [1]) can be accommodated, but only if the parameters are

somewhat fine-tuned — proponents of the MSSM would have been more comfortable had

the Higgs boson been discovered closer to the tree-level prediction. (See [2] for a discussion

of fine-tuning in the MSSM.) The alternative to fine-tuning is new physics at the TeV scale

that contributes to the Higgs mass. For recent attempts, see [3 – 7].

There are two hints as to the nature of this new TeV scale physics. The first is the

striking unification of the gauge couplings in the MSSM [8]. We will demand that any

modification of the Higgs sector maintain unification. Second, the theory be should as

natural as possible; some mechanisms raise the Higgs boson mass only by introducing a

substantial fine-tuning. As we will discuss in section 2.1, these two criteria lead us to study

particular gauge extensions of the MSSM. In these extensions the Higgs mass is increased

through non-decoupling D-terms [3, 9]. To have a significant effect, the new gauge group

under which the Higgs is charged must have a large coupling.

Unfortunately, the simplest gauge extensions of the MSSM spoil gauge coupling uni-

fication. In these cases, the only recourse is to include additional particles whose sole

purpose to restore unification, “unifons.” In this paper, using the success of the MSSM

as a guide, we will describe two models without these designer particles. In these models,

gauge coupling unification constrains the size of the non-decoupling D-terms, limiting the

potential increase in the Higgs mass. This is easy to see: in our approach, we mix the

electroweak SU(2) × U(1) with additional gauge groups. This increases the SU(2) × U(1)

gauge couplings, which are related to the Higgs quartic coupling by supersymmetry. Uni-

fication relates these new electroweak gauge groups to a new colored gauge group, which

is in danger of becoming strongly coupled. This puts an upper bound on the size of the

SU(2) × U(1) coupling, and therefore on the D-term contribution to the Higgs mass.

In section 2 we present two gauge extensions of the MSSM that naturally maintain

unification, and can contribute to the Higgs mass without invoking fine tuning. The first

model adds an extra copy of a GUT gauge group, which is coupled to the standard model

gauge content by bi-fundamentals. We call this approach “product unification.” The

second model is one of accelerated unification [10], where the additional gauge content is a

copy of the standard model gauge group. In this case unification is maintained, but occurs

at a much lower scale. Notably, this model requires the presence of a second pair of Higgs

doublets at low energy, which might seem an ad hoc addition to the model, resurrecting

the “unifon” specter. On the contrary, we will argue in section 5.3 that their existence can

be related to the observed stability of the proton via a missing-partner mechanism [11].

The organization of the rest of the paper is as follows. In section 3 we discuss in

detail non-decoupling D-terms, focusing on the specific potential that arises in both of the

models described above. In section 4 we apply these results to the product unification
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model and discuss implications for the Higgs mass. We find that in this case the non-

decoupling D-terms can contribute roughly 10 GeV to the Higgs mass. In section 5 we

turn to the minimal accelerated unification model, and conclude that D-terms can easily

raise the Higgs mass by 30 − 40 GeV. We discuss precision unification in both cases.

Finally we conclude and present an outlook for these two models.

2. Motivation: the Higgs mass in unified models

In section 2.1, we will begin by outlining various modifications to the MSSM that can

raise the Higgs mass. Of these, we will argue that only two — the NMSSM [12] and non-

decoupling D-terms — can accommodate unification without fine tuning. We will focus on

the second of these, and give in section 2.2 a more detailed description of the restrictions

that unification places on this approach. There are two distinct possibilities: the unification

scale may be preserved by the new gauge structure, or it may be lowered. In section 2.3 we

briefly describe the two simplest implementations of these alternatives. The first involves

adding an extra unified gauge group, while the second requires the addition of a copy of

the standard model gauge content.

2.1 Increasing the Higgs mass

We will now discuss various ways of raising the Higgs mass in supersymmetric models, and

conclude that gauge extensions and the NMSSM are the two most attractive alternatives.

SUSY breaking in the MSSM

The simplest way to increase the Higgs mass requires no new physics; it simply uses the

SUSY breaking effects associated with the top squark [13]. In general, a Yukawa interaction

between the Higgs and some other particle will contribute both to the (mass)2 of the Higgs

boson and to its quartic coupling, as

δλ =
Ncy

4

8π2

(

log
mB

mF
+ a2

(

1 − a2

12

))

, δm2 = −Nc(1 + a2)y2

8π2

(

m2
B − m2

F

)

log Λ2 .

(2.1)

Here Nc is the number of colors, mB and mF are the boson and fermion masses, and we

have included the SUSY violating A-term

Lsoft ⊃ y amB hf̃ f̃ c . (2.2)

At loop level, these effects give a logarithmically divergent contribution to the Higgs boson

(mass)2, but only a finite contribution to the Higgs quartic coupling. The result is fine-

tuning, making this mechanism rather unattractive. For example, every 10 GeV increase

in the Higgs mass above 115 GeV requires a doubling of the top squark mass.

We could use the A-term to improve this situation, but such contributions are typically

small. The A-term contribution is maximized at a =
√

6, a parameter choice that has been

dubbed “maximal mixing.” SUSY breaking scenarios often have much smaller A-terms,
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reducing potential contributions to the Higgs mass.1 For example, as a decreases from
√

6

to 1 the contribution to δλ decreases by a factor of 3. Moreover, radiative corrections from

A-terms increase fine tuning in the MSSM. We therefore conclude that A-terms are not

useful for raising the Higgs mass.

Additional matter

It is possible to add Yukawa interactions to new particles, but precision electroweak con-

straints make this unlikely. Chiral multiplets that get their masses from electroweak sym-

metry breaking are very strongly constrained. Vector-like matter makes the already modest

SUSY-breaking logarithm in eq. (2.1) even smaller, so is not a useful alternative.

New F -terms

A more attractive way of raising the Higgs mass is to add new fields that directly couple

to hu or hd in the superpotential. At the renormalizable level the only possibilities are a

gauge singlet, n, and an SU(2) triplet, T . The possible superpotential terms are

W =
(

hu hd

)

(

κ+T+ κnn + κ0T0

κnn + κ0T0 κ−T−

)(

hu

hd

)

, (2.3)

where we have included three different triplets T±, T0 with hypercharges ±1, 0. These

interactions contribute to the quartic coupling of the Higgs bosons at the tree-level, so

can raise the Higgs mass without fine-tuning [14]. However, the triplets will disturb gauge

coupling unification unless additional matter is added to fill out an SU(5) multiplet. The

smallest such multiplets are the 24 of SU(5) for T0, and the 15+15 for T±. Absent an

obvious rationale for adding the remainder of the GUT multiplets, we find this possibility

somewhat distasteful. Moreover, the addition of so much matter raises the prospect of a

Landau pole. Finally, if the triplets acquire a small vacuum expectation value (vev), they

can have dangerous contributions to the T parameter. On the other hand, the presence

of a singlet n will not affect the unification of couplings at the one-loop level, making it a

more promising candidate. This coupling has a positive beta function and will lead to a

Landau pole at large coupling. This constrains the size of the nhuhd coupling at the weak

scale, thus limiting its contribution to the Higgs mass [15].

New D-terms

Finally, one can introduce new gauge groups. The associated D-terms will then contribute

to the Higgs quartic coupling. In the SUSY limit, these new contributions exactly decouple

when the gauge groups break down to the MSSM. On the other hand, if the scale of SUSY

breaking is close to the scale of the breaking of the gauge groups, there are non-decoupling

D-terms which can raise the Higgs mass — essentially, when integrated out these terms

introduce hard SUSY breaking into the MSSM [3].

1For example, anomaly mediation and gravity mediation lead to a ∼ O(1), gaugino mediation to a ∼
O(α

1

2 ), and gauge mediation to a ∼ O(α). Dilaton mediation gives the largest value, a ∼
√

3 [2].
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These contributions to the quartic coupling (and hence the physical Higgs boson mass)

arise at tree level, while contributions to the (mass)2 occur only at loop level. This allows

an increase in the Higgs boson mass without significant fine-tuning. However, this new

non-supersymmetric quartic coupling generates a quadratic divergence in the Higgs mass,

which is cut off at the mass of the new vector bosons. To prevent fine tuning, we therefore

require that this contribution not be too large, since

δλ

λ + δλ

M2
V

16π2v2
≈ Fine Tuning−1. (2.4)

This constrains the breaking scale to be in the 3 – 10 TeV range. The lower limit is

set by precision electroweak considerations. The upper limit of 10 TeV corresponds to a

fine-tuning of approximately 10%.

We have seen that non-decoupling D-Terms have the potential to raise the Higgs mass

without fine-tuning, but we must still require that the new fields do not upset unification.

We will now proceed to outline the two different ways that extended gauge sectors can

accomplish this, and present two minimal implementations of this mechanism.

2.2 Unification in the MSSM

At one loop, gauge coupling unification can be tested by examining the following relation

between the inverse gauge couplings and the one loop beta functions for the gauge groups:

α−1
3 (MZ0) − α−1

2 (MZ0)

α−1
2 (MZ0) − α−1

1 (MZ0)
=

b3 − b2

b2 − b1
≡ B32

21 , (2.5)

where bi are the one loop beta function coefficients. Using the experimentally measured

values of the gauge couplings at the weak scale [16],

α−1
EM (MZ0) = 127.918 ± 0.018

sin2 θW (MZ0) = 0.23120 ± 0.00015

αs(MZ0) = 0.1187 ± 0.0020

(2.6)

the left hand side of eq. (2.5) is 0.719 ± 0.004.2 In the MSSM, we have (b1, b2, b3) =

(33/5, 1,−3), so B32
21 = 0.714. This agreement summarizes the success of gauge coupling

unification in the MSSM at one-loop.

We must now ask what mechanisms allow us to raise the Higgs mass without changing

B32
21 . One possibility is to add extra matter only in complete GUT multiplets. Then all the

bi are all shifted by a fixed amount – in this case the unification scale is unchanged, but

the value of the gauge couplings at unification may be altered. The NMSSM is a trivial

implementation of this strategy (all bi are unchanged), and, as described above, is effective

in raising the Higgs mass. If we wish to consider gauge extensions to the MSSM, we must

add a complete unified gauge group to the model. A model of this form, which we refer

to as product unification, will be described in the next subsection, and in greater detail in

section 4.

2We have converted here αY to the GUT normalized α1 = (5/3)αY .
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TeV
1310     TeV

M
Break

M SUSY
M

GUT

[ SU(3) x SU(2) x U(1) ] x G
SM GUTMSSM

MSSM x GUT

GUT

Figure 1: A minimal model of product unification. The extended gauge group breaks down to

the diagonal subgroup (the SM gauge group) at the TeV scale.

The other natural possibility that keeps B23
12 unchanged is to add matter in such a

way that the b3 − b2 is changed, but a proportional change is made in b2 − b1. In this

case unification still occurs, but at a lower scale. A specific implementation of this idea is

accelerated unification [10], where the unification scale is brought down to the intermediate

scale. The extra gauge content is simply another copy of SU(3) × SU(2) × U(1). A model

of this form will be described below, and in more detail in section 5.

2.3 Two minimal gauge extensions of the MSSM

We will present two minimal models that contain non-decoupling D-terms and preserve

unification. Product unification adds a full GUT gauge group; accelerated unification adds

a second copy of the MSSM gauge group.

Both of these are closely related to deconstructed dimensions [17]. The first model,

product unification, is equivalent to having an extra dimensional GUT with SU(3)×SU(2)×
U(1) gauged on the boundary. The second model is equivalent to a bulk SU(3) × SU(2) ×
U(1) gauge theory with power-law “unification” at a low scale. In order to have non-

decoupling D-terms the effective radius must be 1 – 10 TeV, meaning that the bulk of the

running occurs above the naive five dimensional cut-off. In both examples we will consider

the minimally deconstructed theories, which we now describe.

2.3.1 Product unification

In this approach, the high energy gauge group is G = SU(3)×SU(2)×U(1), augmented by

a grand unified gauge group, GGUT . Near the TeV scale, the product G×GGUT is broken

down to the standard model gauge group, GSM (See figure 1). The matter and Higgs fields

of the standard model are charged under G. After the breaking, they inherit the usual

standard model quantum numbers.

The breaking to the MSSM occurs when link fields, Σ and Σc, acquire a vev. These

fields transform as bi-fundamentals of the global symmetry associated with the GUT gauge

group. The structure of this model is similar to that of minimal deconstructed gaugino

– 6 –
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SU (3) × SU (2) × U (1) [SU (3)]3

ψ, h
Σc

[SU(3)]3 [SU(3)]3Σ

Figure 2: A theory space diagram of the product unification model discussed in the text. In

addition to the usual SU(3) × SU(2) × U(1), there is an SU(3)3 gauge group. The Σ, Σc fields are

bi-fundamentals connecting these groups. The three generations of matter, denoted ψ, and the

pair of Higgs doublets, h, are charged under SU(3) × SU(2) × U(1). We consider a model where

SU(3) × SU(2) × U(1) unifies into the trinified group SU(3)3 at the GUT scale.

TeV 710   TeV

M
Break

M SUSY
M

GUT

G=[ SU(3) x SU(2) x U(1) ]
SM 2 GUTMSSM

MSSM x MSSM    

Figure 3: The minimal accelerated unification model, with N = 2, where two copies of the MSSM

gauge group break down to the diagonal subgroup at the TeV scale.

mediation [18]; however, we will remain agnostic about the exact mechanism of supersym-

metry breaking.3

While any GUT representation for the link fields will leave unification undisturbed,

here we take the fields to transform under a trinified [20] representation (See figure 2). The

reasons are two–fold. First, this representation is the smallest possible. In trinification, the

Σ fields fall into representations of SU(3) that only contribute ∆b = 3 to each beta function.

In SU(5) and SO(10) unification, the link fields add 5 and 10 to ∆b, respectively. Thus

trinification contributes the least possible amount to the gauge coupling beta functions,

which helps keep the theory perturbative. Second, this model is closely related to the

minimal accelerated unification model, which we now discuss.

2.3.2 Accelerated unification

In accelerated unification models [10], the Standard Model gauge group, GSM, is the rem-

nant of an enlarged group, GN
SM, that breaks to the diagonal subgroup at the TeV scale. The

presence of extra matter changes the gauge coupling beta functions, causing the theories

to unify at a much lower scale (see figure 3).

3Gaugino mediated SUSY breaking, along with a TeV diagonal breaking scale, would give a too light τ̃ ,

unless we take the gauginos masses to be unnaturally heavy [19].
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[SU (3) × SU (2) × U (1)]A [SU (3) × SU (2) × U (1)]B

ψ, h, h′
Σc

[SU(3)]3 [SU(3)]3Σ

Figure 4: A theory space diagram of Minimal Accelerated Trinification. There are two copies of

SU(3)×SU(2)×U(1), labeled by subscripts A and B, each of which unifies into SU(3)3. The Σ, Σc

fields are bi-fundamentals connecting these groups. The three generations of matter, denoted ψ,

and two pairs of Higgs doublets (h, h′) are also shown.

The gauge and matter content of the N = 2 trinified model is summarized in fig-

ure 4. There are two copies of the low energy gauge group, which we denote [SU(3)C ×
SU(2)L × U(1)Y ]A,B . The matter and Higgs bosons of the MSSM, as well as a new pair

of Higgs bosons, are charged under [SU(3)C × SU(2)L × U(1)Y ]A. Again, a vector-like

pair of link fields, Σ and Σc, is responsible for breaking the gauge groups down to the

diagonal subgroup. These fields should form complete GUT multiplets, so as to not con-

tribute to the relative running of the gauge couplings. A similar situation occurs in the-

ories of gauge mediated supersymmetry breaking, where additional complete multiplets

are used so as not to spoil unification. Because these fields make up full GUT multi-

plets, rather than the minimum necessary for the breaking of the gauge symmetry, some

components of the Σ fields can become pseudo-Goldstone bosons (PGBs). These par-

ticles can have important phenomenological consequences, which we will address in sec-

tion 5.

While accelerated unification can accommodate any GUT representation for the link

fields, trinification is particularly elegant. SU(5) and SO(10) models contain gauge boson

mediated dimension-six proton decay operators, now dangerous due to the lower GUT scale,

which are difficult to remove in 4-D GUT models. Moreover, the dynamics of the breaking

G2
SM → GSM is simplifier in trinified models, since it is possible to stabilize the potential

for Σ in the D-flat directions by adding renormalizable terms to the superpotential. This

is in contrast with the SU(5) case, where there is only a D-term potential; no stabilizing

superpotential can be added without additional matter [10]. Directions that are not D-flat

would lead to fine-tuning. In addition, as already described above, trinification has the

smallest representation for the Σ fields, ameliorating Landau pole issues.

We must also choose N , the number of copies of the MSSM gauge group. In principle

we may add as many copies as desired, as long as 2N Higgs doublets are added at the same

time. But the expected threshold corrections to unification grow with N , so at large N
unification appears accidental. Moreover, the gauge couplings scale as

√
N gSM , so strong

coupling problems can arise at large N . For these reasons we focus on N = 2, where we

expect to have the best control over unification.4

4For N = 3, there is the interesting possibility that the three pairs of Higgs doublets are related to the

three families (i.e. Higgs-Matter unification), but we will not explore this model here.
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Finally, the N = 2 trinified model presented here has an elegant mechanism to prevent

proton decay. As noted above, this model includes an extra pair of Higgs doublets in addi-

tion to the usual pair present in supersymmetric models. We may then couple one pair of

Higgs doublets to the leptons and the other to the quarks, which suppresses baryon number

violating interactions. We will discuss this mechanism in more detail in section 5.3.2.

3. Non-decoupling D-terms

In this section we discuss the breaking of the extended gauge sector down to the SM gauge

group. The breaking is essentially identical for the product and accelerated unification

models, and will ultimately be the source of the non-decoupling D-Terms that raise the

Higgs mass.

Breaking occurs when the link fields Σ,Σc get a vev. In both of the models described

above, the link fields can be organized into global [SU(3)3]A,B multiplets as

ΣC ∼ (3CA,3CB) Σc
C ∼ (3CB ,3CA)

ΣL ∼ (3LA,3LB) Σc
L ∼ (3LB ,3LA)

ΣR ∼ (3RA,3RB) Σc
R ∼ (3RB ,3RA). (3.1)

The hypercharge generator is given by

Y = −1

6
T 8

L − 1

3
T̃ 8

R, (3.2)

with T 8
L = diag(1, 1,−2) and T̃ 8

R = diag(−2, 1, 1). These fields come in a complete GUT

multiplet and do not disturb unification.

3.1 Decoupling the D-terms

To give the Σ fields a vev, we must include a potential V (Σ). The most general SU(3)

symmetric superpotential is

WΣ = λ(detΣ + det Σc) + µ Tr ΣΣc. (3.3)

We have imposed a symmetry interchanging Σ and Σc which ensures the D-flatness of the

potential. There is one such potential for each of ΣC ,ΣL,ΣR. The Kahler term is

K = Tr egAVAΣe−gBVBΣ† + Tr egBVBΣce−gAVAΣc†. (3.4)

This potential has two D-flat minima at:

〈Σ〉 = 〈Σc〉 = 0 〈Σ〉 = 〈Σc〉 = −µ

λ
11 ≡ f11. (3.5)

We focus on the second solution, which breaks SU(3) × SU(3) → SU(3). The small fluctu-

ations around the vev can be grouped into four complex fields S, η, π and φ:

Σ = eη/
√

6f exp(cAπ/f)Σ0 exp(cBπ/f)

Σc = e−η/
√

6f exp(−cBπ/f)Σ0 exp(−cAπ/f) (3.6)

Σ0 ≡
(

f +
S√
6

)

11 + φ,

– 9 –
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where cA,B are normalization constants. S is the fluctuation of the vev, while η and π are

the Goldstone boson superfields for the broken global U(3) symmetries. Only a subgroup of

this U(3) is gauged. The determinant superpotential breaks the U(1) of this U(3) explicitly,

giving η a mass. The fields transform under the unbroken SU(3) as

S ∼ 1, φ ∼ 8, η ∼ 1, π ∼ 8. (3.7)

Expanding the superpotential around the vev, we find:

W = 2λ cosh

√

3

2

η

f
detΣ0 + µ Tr Σ2

0. (3.8)

This yields masses

µS = −µ, µφ = 2µ, µη = −3µ, µπ = 0. (3.9)

The D-terms decouple in the supersymmetric limit. To see this, define the vector superfields

V0 and VH by

gAVA = g0V0 − g0
gA

gB
VH gBVB = g0V0 + g0

gB

gA
VH , (3.10)

with g−2
0 = g−2

A + g−2
B . It follows that VH acquires a mass while V0 remains massless.

Ignoring V0, the Kahler term may be expanded to leading order as

K = 2 Tr φ†φ +
∣

∣

∣
f +

S√
6

∣

∣

∣

2
(6 + Tr |gHVH + (π + π†)/f |2) + η†η + · · · (3.11)

where g2
H = g2

A +g2
B . Using the gauge transformation V → V +α+α† we can go to unitary

gauge, with π = 0. Now consider a field, H, charged under GA. The Kahler term contains

the coupling to VH (for the moment we suppress the eg0V0)

K = H†egAVAH = H†H − g0gA

gB
H†VHH + · · · . (3.12)

The superfield propagator at zero momentum in unitary gauge is given simply by 1/M2
V .

So, integrating out VH gives

Keff = H†H − g2
0g

2
A

g2
B

1

g2
Hf2

|H†T aH|2 + · · · . (3.13)

The second term contains several interactions that provide important constraints on our

models, but no scalar potential. The scalar potential comes from restoring the eg0V0 to

the first term. This is the just the standard decoupling of the D-terms, automatic in the

superspace formalism. In component field language, this decoupling arises after integrating

out the C-component (i.e. the lowest component) of VH , which corresponds to the lowest

component of π + π† in unitary gauge.

– 10 –
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3.2 Recoupling the D-terms

To avoid decoupling and increase the Higgs mass, we must include SUSY breaking effects.

In unitary gauge, this is accomplished by giving the lowest component of VH a super-

symmetry breaking mass. This can be done in the superspace formalism with a D-term

spurion5

K = M2
V (1 + θ4m2

soft) Tr V 2
H , (3.14)

with M2
V = g2

Hf2. Integrating out VH , we find the effective Kahler potential for H

Keff = H†eg0V0H − g2
0g

2
A

g2
B

(

1

g2
Hf2

− m2
softθ

4

g2
Hf2 + m2

soft

)

|H†T aH|2 + · · · (3.15)

where we have used the modified vector superfield propagator

∆F (p, θ, θ̄) = − 1

p2 − M2
V

+
m2

softθ
4

p2 − (M2
V + m2

soft)
+ · · · . (3.16)

In the limit m2
soft → ∞, the supersymmetry breaking coefficient in eq. (3.15) is maximized,

and the Higgs quartic coupling becomes (including the supersymmetric D-term from the

unbroken gauge theory)

λHiggs = g2
0

(

1 +
g2
A

g2
B

)

= g2
A. (3.17)

The quartic coupling is equal to the D-Term of the unbroken theory.

The D-term contributions to the Higgs mass will be maximized if two conditions are

satisfied. First, SUSY breaking must be effectively communicated to the vector boson mass

from the soft Lagrangian. Second, the gauge coupling gA must be large. We will postpone

the discussion of gA in specific models to section 4.2 and 5.2, where we will see that

unification restricts its size. Here we concentrate on how SUSY breaking is communicated

to the vector boson soft mass. First, we write down the most general soft Lagrangian for

Σ using spurions

W = (1 + aθ2)λ(det Σ + detΣc) + (1 + bθ2)µ Tr ΣΣc (3.18)

K = (1 + m2θ4)
(

Tr egAVAΣe−gBVBΣ† + Tr egBVBΣce−gAVAΣc†
)

. (3.19)

Rewriting in terms of the physical fields, we have

W = 2(1 + aθ2)λ cosh

√

3

2

η

f
det Σ0 + (1 + bθ2)µ Tr Σ2

0 (3.20)

K = (1 + m2θ4)

(

Tr φ†φ +
∣

∣

∣
f +

S√
6

∣

∣

∣

2
(6 + g2

H Tr V 2
H) +

1

2
(η† + η)2 + · · ·

)

. (3.21)

The lowest component of VH has already acquired a mass from m2. In principle, the

addition of SUSY breaking can induce a tadpole for S. This can be removed by a θ

dependent shift.6 Such a shift can contribute to the vector mass (see appendix B). For

5In principle, one could also add θ2 and θ
2

masses.
6This θ dependent shift would induce a θ2 soft mass for the vector field, giving an effective θ2|H |4

interaction.
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simplicity, we assume no tadpole is generated, which amounts to enforcing

m2 + bµ − aµ = 0. (3.22)

Relaxing this condition can lead to additional sources of non-decoupling, but this choice

is sufficient to demonstrate that a significant non-decoupling is possible. Taking a = 0 in

eq. (3.22), it follows that the masses of all the fields (S, φ, η) are positive for m2 > −µ2/2.

After integrating out the massive vector superfield the effective action is

Keff = H†eg0V0H +
g2
0g2

A

g2
B

m2θ4

(gHµ
λ

)2
+ m2

(H†T aH)2 + · · · (3.23)

In fact, as long as λ is not too small, m2 ∼ µ2 ∼ −bµ gives O(1) re-coupling without

destabilizing any modes.

4. Product unification

We now return to a more detailed discussion of the model of section 2.3.1. We begin with

a discussion of one-loop running in this model, and derive the relations between low energy

SU(3)×SU(2)×U(1) parameters and the high energy SU(3)3 parameters. We then address

the central question of the Higgs mass in 4.2. We close this section with a discussion of

unification beyond one-loop.

4.1 One loop running

This model unifies at one loop by construction. At one loop, the beta functions are

d

dt

8π2

g2
i (t)

= −b0,i. (4.1)

Here i runs over the possible gauge groups, and the energy scale t is defined to be

log (µ/3 TeV). The coefficients b0,i are listed in table 1. The trinified gauge group [SU(3)B ]3

starts at a unified coupling, and maintains unification under renormalization group (RG)

flow. We denote this coupling gB .

Using the standard MSSM beta functions, we can run the measured gauge couplings

in eq. (2.6) up to 3 TeV (t = 0). There we match on to the extended gauge sector via

8π2

g2
i,SM(0)

=
8π2

g2
i,A(0)

+
8π2

g2
B(0)

=
8π2

g2
i,A(t)

+ bi,At +
8π2

g2
B(t)

+ bBt. (4.2)

Unification is maintained in this extension because the same quantity (the last two terms

in the above equation) is added to each of the SM gauge couplings. In section 4.3 we

will discuss higher order corrections to unification. Since the relative running of the gauge

couplings is unaffected, the unification scale t∗ is unchanged: t∗ = 29.5, corresponding to

the usual EGUT ∼ 1016 GeV.

From table 1, we see that the SU(3)B beta function coefficients are negative, so the

corresponding couplings run strong at low energies. The requirement that SU(3)B remain

perturbative above the TeV scale sets a maximum value for g∗,B , the value of the unified
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U(1)A SU(2)A SU(3)A [SU(3)B ]3

V 0 -6 -9 -9

ψ 6 6 6 0

H 3
5 1 0 0

Σ 3 3 3 3

b0 93
5 4 0 -6

Table 1: Beta function coefficients for the different gauge groups.
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Figure 5: The running of the gauge couplings, with α−1

A
= 3 at the GUT scale.

gauge coupling at t∗. If we define the low scale coupling 8π2/g2
B(0) = ∆, then

8π2

g2
∗,B

=
8π2

g2
B(0)

− bBt∗ = 177 + ∆. (4.3)

We require ∆ to be reasonably large to ensure that SU(3)B stays weakly coupled.

Similarly, 8π2/g2
∗,A can be obtained by matching the A,B gauge couplings onto the

measured gauge couplings at the weak scale,

8π2

g2
3(0)

= 64 =
8π2

g2
3,A(0)

+
8π2

g2
B(0)

=
8π2

g2
∗,A

+
8π2

g2
∗,B

+ (b3,A + bB)t∗. (4.4)

This implies that 8π2/g2
∗,A = 64−∆. In figure 5 we plot the one loop running of the gauge

couplings.7

4.2 The Higgs mass

From eq. (3.17) we see that the maximum fractional gain in the quartic depends on the

gauge couplings. Making gA as large as possible, we find:

δλSU(2)

λSU(2)
=

g2
2,A

g2
2,SM

− 1<∼
1

3
,

δλU(1)

λU(1)
=

g2
1,A

g2
1,SM

− 1<∼
1

7
. (4.5)

7We could include GUT multiplets charged under the [SU(3)]3B gauge group without spoiling unification.
However, once we fix the low energy gauge couplings, these extra multiplets will contribute to low energy
observables only at higher order, so may be neglected.
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We have used the values of the gauge couplings computed in the previous section — higher

loop corrections will be considered in in section 4.3. The change in the quartic leads to a

Higgs mass bound

m2
h0 ≤ (1.3g2 + 1.15g′2)

g2 + g′2
M2

Z0 = (102 GeV)2, (4.6)

a modest 11 GeV gain over the MSSM tree-level prediction. With top squarks of 400 GeV

the Higgs mass can be lifted to the LEP II bound of 114 GeV. The fine-tuning of the MSSM

may be ameliorated, but the Higgs cannot be made significantly heavier.

In this model D-term contributions to the Higgs mass are tightly constrained. This

is because the value of g2,A(MZ0) is bounded by the total amount of relative running be-

tween SU(3)C and SU(2)L. This conclusion is fairly robust in any model with a product

unification structure. Adding either more gauge groups or matter charged under [SU(3)]3B
will not effect the relative running between SU(2)A and SU(3)A. One could charge some

of the Standard Model matter (such as the first two generations) under B gauge groups

rather than A, but this would cause SU(3)C,A to run asymptotically free, tightening the

bounds on gA(Λ). The only way to increase the Higgs mass bound, eq. (4.6), is to charge

the Higgs doublets under [SU(3)]3B . In this case, renormalizable Yukawa couplings are

not possible, and some ad hoc change must be made to the A sector to recover unifica-

tion.

4.3 Precision unification

While unification in this model is guaranteed at the one-loop level, several effects may alter

the accuracy of this prediction, such as higher loop contributions, TeV scale supersymmet-

ric threshold corrections, GUT scale threshold corrections, and SUSY breaking threshold

corrections. The second two are model dependent, depending in detail upon the GUT

scale physics, as well as the mechanism of supersymmetry breaking. The first two are,

however, calculable. We now quantify the deviation from the one-loop prediction due to

these effects.

Fortunately, the holomorphicity of gauge couplings in supersymmetric theories simpli-

fies the analysis.8 At first, it might appear that unification is disturbed by splittings of

the Σ masses, which are induced by renormalization group evolution. This could lead to

a TeV scale supersymmetric threshold correction. However, this correction cancels against

certain two-loop contributions. The result is that higher loop effects can be encapsulated

in the change in the anomalous dimensions of the light fields [22, 23].

Integrating the NSVZ exact beta function, we can derive an RG invariant matching

equation (see appendix A). We match the diagonal MSSM gauge coupling at the cutoff,

8We stress that the method used here is equivalent to the more traditional approach of multi-loop
running, where gauge couplings are matched at each mass scale. This formalism packages the results in an
elegant way, but is only applicable when SUSY breaking effects are small.
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Λ, and run down to low energies via

8π2

g2(µ)
+ C2 log g2(µ) =

8π2

g2
A(Λ)

+ C2 log g2
A(Λ) +

8π2

g2
B(Λ)

+ CB
2 log g2

B(Λ)

−CB
2 log

Λ2

〈ΣΣc〉 + bφ log
Λ

mφ

+ b0,light log
Λ

µ
−

∑

a

T2(a) log Za(µ,Λ). (4.7)

The sum is over the light fields of the MSSM, C2 and CB
2 are quadratic Casimirs, b0,light is

the one-loop beta function of the light fields, and bφ = 3 is the contribution of the φ fields

to the beta function.

Our goal is to find the multi-loop analog of B32
21 , defined in eq. (2.5). We start by

considering the gauge couplings of the SU(3) and SU(2) sectors:

∆32 ≡ 8π2

g2
3(µ)

− 8π2

g2
2(µ)

= ∆b32
MSSM log

Λ

µ
+ 3 log

g2
A(Λ)

g2
3(µ)

− 2 log
g2
A(Λ)

g2
2(µ)

+ δz32
ψ + δz32

h , (4.8)

where ∆b32
MSSM = −4 is the difference between the one loop beta functions. The final terms

come from the log Zs of the light fields:

δz32
ψ =

1

2
log

3
∏

f=1

Zuc
f
Zdc

f

Zqf
Zlf

, δz32
h = −1

2
log Zhu

Zhd
, (4.9)

all of which are evaluated from Λ down to µ. Similarly, for the SU(2) and U(1) couplings

∆21 ≡ 8π2

g2
2(µ)

− 8π2

g2
1(µ)

= ∆b21
MSSM log

Λ

µ
+ 2 log

g2
A(Λ)

g2
2(µ)

+ δz21
ψ + δz21

h (4.10)

where ∆b21
MSSM = −53

5 . The log Zs of the light fields are given by

δz21
ψ =

1

5
log Πf

Z7
qf

Zlf

Z4
uc

f
Zdc

f
Z3

ec

, δz21
h =

1

5
log Zhu

Zhd
. (4.11)

We can now summarize the deviation from MSSM unification. In the MSSM9

∆32

∆21
=

−4 − 0.11

−28
5 − 0.05

' 0.727. (4.12)

Here we have evaluated the MSSM expression at moderate tan β, where the top Yukawa,

yt ∼ 1, but other Yukawa couplings are insignificant. This is to be compared to the

experimental ratio of eq. (2.5) (run up to 3 TeV and converted to the DR scheme) which

yields 0.718. However, corrections due to the SUSY breaking spectrum (in particular the

9In this case the numerical values of δz change and eqs. (4.8) and (4.10) are modified by the replacement
gA → gSM .
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U(1)A U(1)B SU(2)A SU(2)B SU(3)A SU(3)B
V 0 0 -6 -6 -9 -9

ψ 6 0 6 0 6 0

H 6
5 0 2 0 0 0

Σ 3 3 3 3 3 3

b0 101
5 3 5 -3 0 -6

Table 2: Beta function coefficients for the different gauge groups.

mass splitting between the wino and gluino) can be significant. In the product unification

model, we find

∆32

∆21
=

−4 − 0.07

−28
5 − 0.03

' 0.722 (4.13)

for α−1
A = 3. While both the numerator and denominator vary with α−1

A and λ, the ratio

is fairly insensitive to the choice of parameters. We conclude that the calculable deviation

from the MSSM prediction is roughly one σ. This is not particularly significant, since the

threshold effects from SUSY breaking and GUT scale physics are likely larger than the

above deviation.

5. Accelerated unification

In this section, we analyze the minimal model of accelerated unification described in sec-

tion 2.3.2. In section 5.1 we will discuss one-loop running. We then describe the Higgs mass

bounds in this model. In section 5.3, we discuss some basics of the GUT scale physics, and

conclude that the extra pair of Higgs doublets can suppress proton decay in this model.

Finally, we analyze unification beyond one-loop.

5.1 One loop running

Again, one loop unification is incorporated into this model by construction. The RGEs are

given by eq. (4.1), with coefficients b0,i listed in table 2.

As before, we use the MSSM beta function to run up to 3 TeV (t = 0), where we match

on to the extended gauge sector via

8π2

g2
i,SM(0)

=
8π2

g2
i,A(0)

+
8π2

g2
i,B(0)

=
8π2

g2
i,A(t)

+ bi,At +
8π2

g2
i,B(t)

+ bi,Bt. (5.1)

The unification scale is now given by

t∗ =

8π2

g2

SM,1
(0)

− 8π2

g2

SM,2
(0)

∑

i(b1,i − b2,i)
= 15, (5.2)

i.e. at energies EGUT ∼ 107 TeV . The scale of unification has been lowered to the

geometric mean of the MSSM GUT scale and the TeV scale.
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8π2

g2

A
(0)

8π2

g2

B
(0)

U(1) 206 − ∆ 142 + ∆

SU(2) 123 − ∆ 59 + ∆

SU(3) 64 − ∆ ∆

Table 3: Gauge couplings of the different gauge groups at 3 TeV, where the full gauge group
[SU(3) × SU(2) × U(1)]2 breaks to SU(3) × SU(2) × U(1).

Figure 6: The running of the six gauge couplings, with α−1

A
= 3 at the GUT scale.

Note that SU(3)C,B has a negative beta function coefficient, so runs strong at low

energies. The requirement that SU(3)C,B remain weakly coupled above the TeV scale sets

a minimum value for 8π2/g2
∗,B , constraining the value of the unified gauge coupling at t∗.

Defining the low scale coupling 8π2/g2
3,B(0) = ∆,

8π2

g2
∗,B

=
8π2

g2
3,B(0)

− b3,Bt∗ = 90 + ∆. (5.3)

Table 3 shows the various TeV scale gauge couplings as a function of ∆. Finally, in figure 6

we plot the one loop running of the gauge couplings.

5.2 The Higgs mass

Before discussing the Higgs mass bound in this model, we should address the basic structure

of the Higgs sector in the presence of the extra doublets. Electroweak symmetry breaking

with four Higgs doublets is complicated, and a detailed discussion lies beyond the scope

of this work. In [21] the supersymmetric four Higgs doublet model was studied in some

detail.

The Yukawa couplings for the Higgs are (ignoring neutrinos)

WFlavor = yuqhuuc + ydqhdd
c + yelhee

c. (5.4)

We need hu, hd, and he to acquire vevs, which constrains the mass terms of the theory.
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We start with a four Higgs doublet model, with superpotential

Wµ =
(

hu hν

)

(

µud µue

µνd µνe

) (

hd

he

)

. (5.5)

In the absence of off-diagonal terms, µue and µνd, the quark and lepton Higgs sectors are

completely isolated. Thus only hu and hd or he and hν acquire vevs. We therefore need

non-zero mixing terms.

To get a limit on the Higgs mass, consider the case where one µ is much larger than

the rest. Then the corresponding pair of Higgs doublets may be integrated out, reducing

the Higgs sector to the standard one with two Higgs doublets. This procedure does not

lead to fine tuning. For the purposes of our discussion, we will give a large mass to hdhν .

This decoupling limit also has the effect of suppressing the masses of the down type quarks

relative to the up quarks. Away from this limit many Higgs bosons become light, and the

couplings to the gauge bosons are significantly altered. In this case, the LEP limit for the

Higgs mass may be altered over sizeable regions of the parameter space – this question

certainly warrants further investigation, but will not be pursued here.

For the remainder of this section, we assume the above decoupling limit applies. The

limit on the tree-level Higgs mass bound in minimal accelerated unification is significantly

relaxed compared to the previous model:

δλSU(2)

λSU(2)
=

g2
2,A

g2
2,SM

− 1<∼ 1,
δλU(1)

λU(1)
=

g2
1,A

g2
1,SM

− 1<∼ 1. (5.6)

The new bound on the Higgs mass is

m2
h0 ≤ 2M2

Z0 = (128 GeV)2, (5.7)

so we can easily accommodate the LEP II bound without fine-tuning. This considerable

improvement over the product unification model is possible because both the A and B gauge

couplings split in accelerated unification. This means that SU(3)B remains perturbative

for much larger values of the SU(2)A coupling, allowing a larger Higgs mass.

In fact, if we charge the second pair of Higgs doublets under the B groups rather than

A groups, the limit is relaxed even further. However, as we will see in section 5.3.2, if both

pairs of Higgs doublets are charged under the A groups the model has a natural mechanism

to suppress proton decay.

We could also increase the Higgs mass bound by considering N ≥ 3 models. This

reduces the relative running of the Higgs gauge groups, but lowers the GUT scale at the

same time. In addition, as more gauge groups are added, threshold corrections increase and

precision unification is lost. In section 5.4 we will see that unification is quite delicate in

accelerated unification models, and becomes more so as N is increased. Thus, there seems

to be a tension between increasing the Higgs mass and ensuring accurate gauge coupling

unification.
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5.3 GUT scale physics

At the unification scale the gauge groups unify into (SU(3)C × SU(3)L × SU(3)R)A,B. The

usual MSSM matter and Higgs fields combine with additional vector-like matter to form a

chiral 27 of [SU(3)]3. We will assume that this new exotic matter acquires a mass at the

GUT scale, so is not relevant to our discussion.

At the unification scale the matter fields, Ψ, and Higgs fields, Φ, form the chiral 27 of

SU(3)3A

ΨSM
Q ,ΦQ ∼ (3C ,3L)A, ΨSM

L ,ΦL ∼ (3L,3R)A, ΨSM
Qc ,ΦQc ∼ (3R,3C)A. (5.8)

The subscript indicates the transformation properties under the gauge charges. Throughout

this section capital Greek letters (Ψ,Φ,Σ) will denote representations of the trinified GUT

group. Lower case Latin letters (q, hu, hd) will denote fields that transform under SU(3)×
SU(2) × U(1).

5.3.1 A trinified NMSSM

The NMSSM is naturally embedded in trinification. The Higgs multiplets contain a singlet

ΦL, often dubbed the neutretto. As discussed further in section 5.3.2, the superpotential

det ΦL gives rise to the NMSSM coupling nhuhd. The trilinear n3 term does not typically

appear. However, a source term for the scalar can appear after SUSY breaking and cause

n to acquire a weak scale vev [24].

We start with four Higgs bosons and two singlets at the high scale, and RG flow the

superpotential

WNMSSM =
(

hu hν

)

(

(κqnq + 1
2κ′

qnl) (κ′
lnl + κ′

qnq)

(κ′
lnl + κ′

qnq) (κlnl + 1
2κ′

lnq)

)(

hd

he

)

(5.9)

down to the low scale. We add soft breaking A terms, soft masses for all the fields, and

linear soft terms for the singlets.

The analysis of the previous section assumed that the sole new contribution to the

quartic coupling came from the gauge sector. However, it is quite possible that an NMSSM-

like structure might be a part of the trinified model presented here. In this case, just as in

the NMSSM, there is an additional contribution to the quartic coupling. The size of this

effect is constrained by the requirement that the coupling not reach a Landau pole below

the GUT scale.10 In this section we will describe how this bound is relaxed in models of

accelerated unification — this occurs because the unification scale is lower.

The one loop RGE for the NMSSM–like superpotential coupling κn (W 3 κnnh̄h)

above the TeV scale is

d

dt
κn ∼ κn

16π2

(

4κ2
n − g2

2,A − 3

5
g2
1,A

)

. (5.10)

10This condition has recently been reexamined in [5].
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We have neglected the contribution of SM Yukawa couplings, which depend on which κ

parameter is being studied. This equation is readily solved in the limit κn À g,

κ2
n(0)<∼

2π2

t∗
⇒ κn <∼ 1.15. (5.11)

This is a modest increase over the standard NMSSM coupling bound. The lowered GUT

scale has relaxed the bound on the quartic contribution.

A secondary effect is that the NMSSM coupling is supported by running of the gauge

interactions. Accelerated unification increases the gauge couplings, which changes the

bounds on κn [4]. However, it is not possible to get the maximal benefit described in [4] in

the more restricted accelerated unification framework. From eq. (5.10), this would require

increasing either the SU(2) or U(1) gauge couplings. However, the size of these couplings

is restricted by the condition that SU(3)C A,B coupling, which is larger than the SU(2) and

U(1) couplings, must be small.

To summarize, the NMSSM couplings can contribute to the Higgs quartic couplings in

accelerated unification models.

5.3.2 Proton decay and the four Higgs doublets

In trinified models there is a Z3 symmetry that relates the three gauge couplings to each

other. This leads to the introduction of proton decay. This is a model dependent feature

– for instance in some string inspired models there is no Z3 symmetry, and the unified

gauge coupling is set by the vev of a dilaton. Here, we will take the Z3 symmetry seriously,

and consider implications for proton decay. Proton decay occurs through the exchange

of colored Higgs triplets (see [25] for a recent study). These triplets will get a GUT-scale

mass which, depending on the flavor structure of the model, may not be enough to suppress

proton decay via dimension five and six operators, in which case further model building

is necessary. As we will see, the addition of a second pair of Higgs doublets can easily

suppress proton decay in our accelerated unification model.

To see how this occurs, we must first discuss the implementation of flavor in this

model. There are two pairs of Higgs doublets in accelerated unification. We will couple

one pair, Φl
L, to the leptons and the other pair, Φq

L, to the quarks. Assuming that the

flavor structure obeys the Z3 symmetry, the MSSM Yukawa interactions are schematically

given by the following superpotential terms

Wflavor = yQ (ΨSM
Q Φq

LΨSM
Qc + ΨSM

L Φq
QcΨ

SM
Q + ΨSM

Qc Φq
QΨSM

L )

+yL (ΨSM
L ΨSM

L Φl
L + ΨSM

Q ΨSM
Q Φl

Q + ΨSM
Qc ΨSM

Qc Φl
Qc). (5.12)

At the level of the superpotential, baryon number symmetry is exact if we assign Φq
Q and

Φq
Qc baryon number ±1

3 and assign Φl
Q and Φl

Qc baryon number ∓2
3 . We have suppressed

proton decay through a missing partner mechanism, as long as the colored triplet Higgs

boson does not mix quark and lepton sectors at the GUT scale.

However, the q and l Higgs sectors must not be completely decoupled: if this were the

case, then only one Higgs pair would acquire a vev at the electroweak scale, leaving the

second sector massless. Moreover, we need µ terms for Higgs fields, which may be generated
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yQ

H l
Q

H l
Q

yL

q

H
q
Q

dc

yH

yLq q

q

ec

Figure 7: A leading operator contributing to baryon number violation.

by giving a vev to the NMSSM fields in both Higgs sectors. The trilinear superpotential is

WNMSSM =
1

3
κl(Φ

l
L)3 +

1

3
κq(Φ

q
L)3 +

1

2
κ′

l(Φ
l
L)2Φq

L +
1

2
κ′

q(Φ
q
L)2Φl

L + cyclic. (5.13)

⊃
(

hu hν

)

(

(κqnq + 1
2κ′

qnl) (κ′
lnl + κ′

qnq)

(κ′
lnl + κ′

qnq) (κlnl + 1
2κ′

lnq)

)(

hd

he

)

. (5.14)

The low energy theory is similar to the NMSSM, but without n3 terms.11 The cyclic

permutations of the interactions in eq. (5.13) no longer preserve baryon number exactly.

The κl and κq interactions give rise to dimension seven p → e+ν̄ν̄ and n → n̄ oscillations.

The κ′
q and κ′

l interactions lead to dimension seven proton decay processes of the form

p → K+ν. All of these come with three powers of Yukawa couplings, and three powers of

the GUT scale in the denominator.

For example, consider the baryon number violating operator

W 6B =
qqqqdcec

M3
+ · · · , (5.15)

which is generated by the diagram in figure 7. The interactions in this diagram come from

the cyclic permutations of the terms in WY and WNMSSM. Taking into account the small

Yukawa couplings and CKM mixings, this leads to a proton lifetime

τp ∼ 1070yrs.

(

MHC

MGUT

)6

, (5.16)

where MHC
is the mass of the colored Higgs triplet mediating the proton decay. We can

therefore take the mass of the Higgs triplet to be quite low without leading to unacceptable

proton decay, unlike in the MSSM.

11Normally, the n3 terms explicitly break a Peccei-Quinn (PQ) symmetry, preventing the appearance of
massless Goldstone mode. Here, the PQ symmetry is partially contained within SU(3)3, so the Goldstones
are given a mass via a tadpole for n.
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5.4 Precision unification

In section 4.3, we showed that the effects of higher loop running are encoded in the anoma-

lous dimensions of the light fields. In accelerated unification models, we must also include

contributions from the new light fields. In addition to the second pair of Higgs doublets,

there are also pseudo-Goldstone bosons (PGBs), as we will now discuss. The mass of these

particles is the largest source of imprecision in the gauge coupling unification prediction.

The superpotential of eq. (3.3) has a global SU(3) symmetry. The breaking to the

diagonal will in general give rise to Goldstone bosons. In the SU(3) color sector, all such

particles get a mass from gauge interactions. For the SU(3)L and SU(3)R sectors, this is

not the case. The pseudo-Goldstone bosons can be given a mass if the global symmetry

is softly broken, e.g., by splitting the value of the µ term of eq. (3.3) for the various

components in the SU(3)L and SU(3)R sectors. The condition to lift the PGBs is det µI 6= 0,

I = L,R. While renormalization group evolution splits the µ parameters, it will not cause

the determinant to flow to a non-zero value. GUT-scale threshold corrections could make

this determinant non-zero. The mass of the PGBs will then RG evolve as detµ evolves. If

the SU(3) breaking couplings are larger than the SU(3) preserving superpotential couplings,

then detµ will flow away from zero. We will not specify the mass of these particles. Rather,

we will leave them as a free paramter. The breaking of the global symmetry will induce

corrections to unification, the dominant effect will come from through the PGB masses.

We will summarize this effect at the end of this section.

We now apply the formalism of appendix A to accelerated unification. The difference

between the SU(3) and SU(2) couplings is

∆32 ≡ 8π2

g2
3(µ)

− 8π2

g2
2(µ)

=

[

∆b32
MSSM log

Λ

µ
+ ∆b32

AU log
Λ

〈Σ〉

]

+δz32
ψ + δz32

h + 3 log
g2
A(Λ)g2

B(Λ)

g2
3(µ)

− 2 log
g2
A(Λ)g2

B(Λ)

g2
2(µ)

+δb32
h log

〈Σ〉
µH

+ δb32
PGBL

log
〈Σ〉

mPGBL

, (5.17)

where µH is the mass of the second pair of Higgs doublets, ∆b32
MSSM is the difference

between beta functions in the MSSM, and ∆b32
AU ≡ ∆b32

A +∆b32
B −∆b32

MSSM is the difference

between beta function coefficients for the additional accelerated unification fields. When

N = 2, ∆b32
AU = ∆b32

MSSM = −4. The quantity in brackets reproduces the MSSM one loop

prediction. The log Z’s of the light fields

δz32
ψ =

1

2
log

3
∏

f=1

Zuc
f
Zdc

f

Zqf
Zlf

, δz32
h = −1

2
log Zhu

Zhd
Zhe

Zhν
, (5.18)

are evaluated by integrating the anomalous dimensions from Λ down to µ. The final terms

arise from the second pair of Higgs doublets and the PGBs in the left sector, with

δb32
h = −1 δb32

PGBL
= −1. (5.19)
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If the masses of these particles were precisely at the scale of diagonal breaking, they would

not contribute any additional deviation. However, in the model presented here the masses

are essentially free parameters. The mass of the extra Higgs multiplet depends sensitively

on the values of the various µ parameters. A similar calculation for the SU(2) and U(1)

couplings yields,

∆21 ≡ 8π2

g2
2(µ)

− 8π2

g2
1(µ)

=

[

∆b21
MSSM log

Λ

µ
+ ∆b21

AU log
Λ

〈Σ〉

]

+ 2 log
g2
A(Λ)g2

B(Λ)

g2
2(µ)

+ δz21
ψ + δz21

h + δb21
h log

〈Σ〉
µH

(5.20)

+ δb21
PGBL

log
〈Σ〉

mPGBL

+ δb21
PGBR

log
〈Σ〉

mPGBR

, (5.21)

with ∆b21
MSSM = ∆b21

AU = −18/5. The log Zs of the light fields are

δz21
ψ =

1

5
log Πf

Z7
qf

Zlf

Z4
uc

f
Zdc

f
Z3

ec

, δz21
h =

1

5
log Zhu

Zhd
Zhe

Zhν
. (5.22)

Finally, the additional Higgs doublets and the PGBs contribute to the beta function coef-

ficients

δb21
h =

2

5
, δb21

PGBL
=

2

5
, δb21

PGBR
= −12

5
. (5.23)

For the moment, let us assume that these additional light fields are degenerate with the

remainder of the multiplet. In this case, we find the ratio

∆32

∆21
' 0.721. (5.24)

This result is insensitive to the choice of α−1
A . Making the more reasonable choice that the

PGBs and the extra Higgs multiplet are two e-folds below the rest of the multiplet, we find

∆32/∆21 = 0.716. Again, we conclude that none of the calculable corrections to unification

are very large. However, if the masses deviate too far from the diagonal breaking scale the

corrections from the PGBs can be non-negligible. Moreover, when N > 2, there are more

PGBs, which can amplify these effects.

There are of course additional threshold corrections. As before, there are the correc-

tions from SUSY breaking. Also, since there are two copies of SU(3)3 near the GUT scale,

the high energy particle content is double that of the MSSM. So, the naive expectation

for GUT scale threshold corrections is that they should be roughly double those of the

MSSM. An interesting possibility arises in accelerated unification that is not present in the

MSSM. In section 5.3.2 we showed that proton decay is suppressed, so it is possible for the

colored Higgs triplets that mediate proton decay to be much lighter than the GUT scale.

This leads to a threshold correction that improves the unification of the couplings. In the

minimal SU(5) GUT, such a threshold correction would be desirable, but is forbidden by

proton decay [26].
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6. Conclusions

Gauge coupling unification places a natural constraint on the structure of potential gauge

extensions of the MSSM. Moreover, it limits the size of the new gauge couplings under which

the Higgs boson may be charged. The result is that the Higgs mass cannot be too heavy,

even in models with extended gauge structure. Accelerated unification seems to be the

best hope for realizing a heavier Higgs mass, but due to the presence of pseudo-Goldstone

bosons, unification becomes somewhat delicate.

In the models discussed here, a host of new states associated with the breaking should

be found at the 3-10 TeV scale. In the accelerated unification model, it is likely that the

lightest state would be one of the PGBs. The precise mass of this particle depends on the

breaking of the GUT symmetry. We now discuss precision electroweak constraints, which

set the mass of the new vector bosons.

6.1 Constraints

Precision electroweak constraints on these models arise from interactions between the heavy

vector bosons and the Standard Model fermions and Higgs. One might worry that these

considerations significantly constrain the theory; in order to maximize non-decoupling D-

terms we need the Standard Model gauge couplings to be as strong as possible, which means

that the heavy vector bosons couple with O(1) strength to the Standard Model fermions.

However, because these new vectors are not responsible for cutting off the gauge quadratic

divergences to the Higgs, they can be quite heavy without fine-tuning. Instead, the heavy

vectors cut off divergent contributions to the Higgs mass arising from the modified quartic

coupling, so the vectors may comfortably lie in the 3 – 10 TeV range.

To see this, it is useful to introduce mixing angles θi for the gauge fields, obeying

sin2 θi =
g2
i,SM

g2
i,A

, cos2 θi =
g2
i,SM

g2
i,B

. (6.1)

The heavy vectors, which we denote Ai, couple to the to the MSSM via the interaction

Leff = −gi,SM cot θi A
µ
i jµi,SM +

g2
i,SMf2

sin 2θi
(Aµ

i )2. (6.2)

At low energies the Ai may be integrated out to give the current-current interaction

Leff =
cos4 θi

2f2
jµ
i,SMjµSM. (6.3)

These terms contribute to the W,Y,Z extended oblique corrections, which are constrained

experimentally, implying a constraint [27]

fL,R

cos2 θL,R

>∼ 3.5 TeV . (6.4)

Thus even for cos θL,R ∼ 1 the breaking scales can be 3.5 TeV and vectors will be under

10 TeV.
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6.2 Future directions

There are several potential directions for future work. As noted in the text, the theories

under consideration are very similar to deconstructed models of gaugino mediation. It

would be interesting to determine whether the link fields can communicate SUSY break-

ing to the MSSM. Once a SUSY breaking scenario is specified, either this mechanism or

another, it would be possible to discuss spectroscopy and unification in further detail. It

would also be of interest to explore the supersymmetric four Higgs doublet in more detail.

In principle, the experimental limits on the Higgs boson can be modified.
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A. Precision unification and holomorphy

In supersymmetric theories, threshold corrections are constrained by holomorphy. This

technique can be applied to calculate corrections to unification in any model where holo-

morphy is a useful constraint (i.e. when there are large supersymmetric masses).

Our first result is that threshold effects from mass splittings cancel against higher loop

corrections [22, 23]. To see this, consider the exact NSVZ beta function [22]

βg =
g3

16π2

b0 −
∑

a T2(a)γa

1 − C2
g2

8π2

, (A.1)

where b0 = −3C2 +
∑

a T2(a). This can be integrated to give

8π2

g2(µ)
+ C2 log g2(µ) =

8π2

g2(Λ)
+ C2 log g2(Λ) + b0 log

Λ

µ
−

∑

a

T2(a) log Za(µ,Λ). (A.2)

Now consider integrating out a massive matter field (like the link fields, Σ). Gauge cou-

plings are matched at the physical mass of the field, mr, which differs from the holomorphic

mass m (which appears in the superpotential) by a factor of the wave function renormal-

ization: m = Z(mr,Λ)mr. Thus, the log Z that appears in the NSVZ formula can be

combined with a holomorphic mass to recover a running mass. So, it is possible to write a

RG invariant matching equation exclusively in terms of holomorphic quantities:

8π2

g2
LE(Λ)

+ C2 log g2
LE(Λ) =

8π2

g2
HE(Λ)

+ C2 log g2
HE(Λ) − log

Λ

m
. (A.3)

Here g2
LE(Λ) and g2

HE(Λ) are the low energy and high energy gauge couplings defined at

the cut-off Λ; they have one loop beta functions b0,LE and b0,HE respectively that differ by

one. Using the NSVZ beta function, one can verify that eq. (A.3) is equivalent to matching

the high energy and low energy gauge couplings at the physical mass scale. However,

eq. (A.3) is valid at all scales, including at the cut-off, where there clearly has been no
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running to split m. Thus, complete GUT multiplets will lead to a small deviation from

the MSSM prediction. The dominant effect is indirect: the gauge coupling RG trajectories

are deflected by the presence of the Σ fields, which in turn contributes to the last term in

eq. (A.2) for the light MSSM fields.

A second potential source of modifications to unification comes from the breaking of

extended gauge symmetry. We must apply a matching condition when G×GGUT → GSM .

The usual matching conditions

8π2

g2(mV,phys)
=

8π2

g2
A(mV,phys)

+
8π2

g2
B(mV,phys)

,

(

8π2

g2(mX,phys)

)

−
=

(

8π2

g2(mX,phys)

)

+

,

(A.4)

are reproduced by the RG invariant matching equation

8π2

g2(Λ)
+C2 log g2(Λ) =

8π2

g2
A(Λ)

+C2 log g2
A(Λ)+

8π2

g2
B(Λ)

+CB
2 log g2

B(Λ)−CB
2 log

Λ2

〈ΣΣc〉 . (A.5)

Here 〈Σ〉 and 〈Σc〉 are the vevs of the fields that break the gauge symmetry, and we have

used CSM
2 = CA

2 ≡ C2. We have also used expressions for the renormalized gauge boson

masses:

M2
V = Z(MV ,Λ)〈ΣΣc〉(g2

A + g2
B)M2

V
(A.6)

M2
X = Z(MX ,Λ)〈ΣΣc〉(g2

B)M2

V
. (A.7)

Applying the above RG invariant matching condition gives rise to eq. (4.8) for product

unification.

For accelerated unification, the RG invariant matching equation is similar. The analog

of eq. (A.5) is:

8π2

g2(µ)
+ C2 log g2(µ) =

8π2

g2
A(Λ)

+ C2 log g2
A(Λ) +

8π2

g2
B(Λ)

+ C2 log g2
B(Λ)

−C2 log
Λ2

〈ΣΣc〉 + bφ log
Λ

mφ

+b0,light log
Λ

µ
−

∑

a

T2(a) log Za(µ,Λ). (A.8)

We have used C2 = CA
2 = CB

2 , and integrated out the φ multiplet at its holomorphic mass.

In this case, there are additional light states in the sum, namely the pseudo-Goldstone

bosons and Higgs multiplets discussed in the text.

B. D-terms and tadpoles

In this appendix, we give general expressions for the masses of MVH
, S, φ, and η, taking

into account the possibility of a SUSY breaking induced tadpole for the S field. After

including the supersymmetry breaking, as in eq. (3.18), and restricting attention to the
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field S, there is a linear source term:

W = ((a − b)µ − m2)θ2
√

6
µ

λ
S − µ(1 + (2a − b)θ2)

S2

2
+

λ

3
√

6
(1 + aθ2)S3

K = (1 + m2θ4)S†S. (B.1)

We may shift S by a constant to remove this term,

S → S + J J =

√
6

λ
(−jSµ + jF µ2θ2). (B.2)

Solving for jS and jF ,

jF = −jS − j2
S (B.3)

µ2 − m2 + (2a − b)µ

µ2
jS +

(

3 +
a

µ

)

j2
S + 2j3

S =
(m2 + (b − a)µ)

µ2
. (B.4)

This shift affects the Kahler term for VH :

K = g2
H

µ2

λ2
(1 + jS)2

(

1 +

(

m2 + µ2 j2
F

(1 + jS)2

)

θ4

)

Tr V 2
H . (B.5)

This expression summarizes how SUSY breaking is communicated to the vector multiplet.

We must also check that the other scalar masses

m2
S

µ2
=

(

1 + 2jS

)2
+

m2

µ2
±

(2a − b

µ
− 2

(

jF − a

µ
jS

))

m2
φ

µ2
=

(

2 + jS

)2
+

m2

µ2
±

(a + b

µ
−

(

jF − a

µ
jS

))

m2
η

µ2
=

(

(3 + 2jS)2 + 2j2
S +

m2

µ2

)

∓ 3

[

4j2
S − 5jS − m2

µ2
+ (1 + jS)

a

µ

]

(B.6)

remain positive. It may be shown that these masses remain positive over large regions of

parameter space. However, as described in the text, it is sufficient to note that when a = 0

and jS = jF = 0 the masses are positive whenever m2 > −µ2/2.
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[18] C. Csáki, J. Erlich, C. Grojean and G.D. Kribs, 4D constructions of supersymmetric extra
dimensions and gaugino mediation, Phys. Rev. D 65 (2002) 015003 [hep-ph/0106044];
H.C. Cheng, D.E. Kaplan, M. Schmaltz and W. Skiba, Deconstructing gaugino mediation,
Phys. Lett. B 515 (2001) 395 [hep-ph/0106098].

– 28 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C015002
http://xxx.lanl.gov/abs/hep-ph/0311349
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C015003
http://xxx.lanl.gov/abs/hep-ph/0405267
http://jhep.sissa.it/stdsearch?paper=10%282004%29036
http://xxx.lanl.gov/abs/hep-ph/0404197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB508%2C103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB508%2C103
http://xxx.lanl.gov/abs/hep-ph/0010113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C115005
http://xxx.lanl.gov/abs/hep-ph/9905252
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB193%2C150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB193%2C150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD24%2C1681
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD24%2C1681
http://xxx.lanl.gov/abs/hep-th/0108089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB206%2C387
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB206%2C387
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB115%2C380
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB113%2C135
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB120%2C346
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB237%2C307
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD39%2C844
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB257%2C83
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C85%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C66%2C1815
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C81%2C516
http://xxx.lanl.gov/abs/hep-ph/9804235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C70%2C2686
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C70%2C2686
http://xxx.lanl.gov/abs/hep-ph/9210242
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB592%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB592%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C86%2C4757
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C86%2C4757
http://xxx.lanl.gov/abs/hep-th/0104005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C015003
http://xxx.lanl.gov/abs/hep-ph/0106044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB515%2C395
http://xxx.lanl.gov/abs/hep-ph/0106098


J
H
E
P
0
6
(
2
0
0
6
)
0
3
4

[19] D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent
extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293].

[20] S.L. Glashow, Trinification of all elementary particle forces, Print-84-0577 (BOSTON);
G. Lazarides, C. Panagiotakopoulos and Q. Shafi, Supersymmetric unification without proton
decay, Phys. Lett. B 315 (1993) 325 [hep-ph/9306332].

[21] M. Drees, Supersymmetric models with extended Higgs sector, Int. J. Mod. Phys. A 4 (1989)
3635.

[22] M.A. Shifman and A.I. Vainshtein, Solution of the anomaly puzzle in SUSY gauge theories
and the Wilson operator expansion, Nucl. Phys. B 277 (1986) 456;
V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low
function of supersymmetric Yang-Mills theories from instanton calculus, Nucl. Phys. B 229

(1983) 381;
V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Supersymmetric instanton
calculus: gauge theories with matter, Nucl. Phys. B 260 (1985) 157;
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low function in
supersymmetric electrodynamics, Phys. Lett. B 166 (1986) 334.

[23] N. Arkani-Hamed and H. Murayama, Renormalization group invariance of exact results in
supersymmetric gauge theories, Phys. Rev. D 57 (1998) 6638 [hep-th/9705189];
Holomorphy, rescaling anomalies and exact beta functions in supersymmetric gauge theories,
JHEP 06 (2000) 030 [hep-th/9707133].

[24] J. Bagger and E. Poppitz, Destabilizing divergences in supergravity coupled supersymmetric
theories, Phys. Rev. Lett. 71 (1993) 2380 [hep-ph/9307317];
J. Bagger, E. Poppitz and L. Randall, Destabilizing divergences in supergravity theories at
two loops, Nucl. Phys. B 455 (1995) 59 [hep-ph/9505244];
V. Jain, On destabilizing divergencies in supergravity models, Phys. Lett. B 351 (1995) 481
[hep-ph/9407382];
C. Panagiotakopoulos and K. Tamvakis, New minimal extension of MSSM, Phys. Lett. B

469 (1999145) [hep-ph/9908351];
C. Panagiotakopoulos and A. Pilaftsis, Higgs scalars in the minimal non-minimal
supersymmetric standard model, Phys. Rev. D 63 (2001) 055003 [hep-ph/0008268];
A. Dedes, C. Hugonie, S. Moretti and K. Tamvakis, Phenomenology of a new minimal
supersymmetric extension of the standard model, Phys. Rev. D 63 (2001) 055009
[hep-ph/0009125].

[25] T. Roy, Unification, multiplets and proton decay, Phys. Rev. D 71 (2005) 035010
[hep-ph/0408291].

[26] H. Murayama and A. Pierce, Not even decoupling can save minimal supersymmetric SU(5),
Phys. Rev. D 65 (2002) 055009 [hep-ph/0108104].

[27] R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after
LEP1 and LEP2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040].

– 29 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C035010
http://xxx.lanl.gov/abs/hep-ph/9911293
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB315%2C325
http://xxx.lanl.gov/abs/hep-ph/9306332
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA4%2C3635
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA4%2C3635
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB277%2C456
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB229%2C381
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB229%2C381
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB260%2C157
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB166%2C334
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD57%2C6638
http://xxx.lanl.gov/abs/hep-th/9705189
http://jhep.sissa.it/stdsearch?paper=06%282000%29030
http://xxx.lanl.gov/abs/hep-th/9707133
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C71%2C2380
http://xxx.lanl.gov/abs/hep-ph/9307317
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB455%2C59
http://xxx.lanl.gov/abs/hep-ph/9505244
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB351%2C481
http://xxx.lanl.gov/abs/hep-ph/9407382
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB469%2C[
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB469%2C[
http://xxx.lanl.gov/abs/hep-ph/9908351
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C055003
http://xxx.lanl.gov/abs/hep-ph/0008268
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C055009
http://xxx.lanl.gov/abs/hep-ph/0009125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C035010
http://xxx.lanl.gov/abs/hep-ph/0408291
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C055009
http://xxx.lanl.gov/abs/hep-ph/0108104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB703%2C127
http://xxx.lanl.gov/abs/hep-ph/0405040

